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Restricted Walks, Stability-Instability 
Transitions, and Dynamic Symmetries 
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The principal results from applying a transition matrix approach to the problem 
of self-avoiding walks which Domb and Hioe obtained some years ago are 
recalled. Some results are then presented on two other different physical 
problems: one on a universal critical exponent for a class of stability-instability 
transitions in the classical Hamiltonian systems, and the other on the existence 
of a characteristic set of constants of evolution when a quantum system pos- 
sesses a certain type of symmetry. The similarity in some of the key concepts 
and methods used in these three problems, which involve studies of the distribu- 
tion of the appropriate eigenvalues and the utilization of the existing symmetry, 
and the dissimilarity in some of the details are noted. 

KEY WORDS:  Restricted walks; critical exponent; stability-instability 
transitions; constants of evolution; Gell-Mann symmetry. 

After graduating with a Bachelor of Science Degree in Physics from 
Imperial College London in 1963, I was privileged to be a graduate student 
of Prof. Cyril Domb at King's College London for a period of four years, 
1963-1967. Professor Domb's spirit and style left an indelible imprint on 
me and my work. Together with the late Prof. Elliott Montroll, with whom 
I worked for several years as a postdoc, Prof. Domb had the strongest 
influence on my work with his ideas and approaches to physical problems. 
As a tribute to Prof. Domb on his retirement from Bar-Ilan University, I 
will first recall and describe briefly the problem of finite restricted random 
walk which he and I first worked on. (1 3) The study of this problem started 
with his ideas of examining the distribution of eigenvalues of the 
appropriate transition matrices, of simplifying the problem by taking into 
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628 Hioe 

account its symmetry using group theory, and of understanding how the 
fractional critical indices arise. I will then describe my more recent work on 
two seemingly quite different physical problems. One concerns the problem 
of stability-instability transitions in the classical Hamiltonian systems, and 
the other concerns the problem of finding constants of evolution in a quan- 
tum system and its relation to the problem of classification of elementary 
particles. A common feature will be seen to be present in all these problems 
which is related to the ideas and concepts underlined above which I 
learned from Prof. Domb.  

1. T R A N S I T I O N  M A T R I X  A P P R O A C H  TO S E L F - A V O I D I N G  
W A L K S  

We considered a restricted walk of order r on a lattice which is defined 
as a random walk in which polygons with r vertices or less are excluded. 
We want to understand how the sequence of restricted walks approaches a 
self-avoiding walk in the limit that both r and the number of steps n 
approach infinity. A restricted walk with a finite r is a Markovian process 
and a transition matrix method for its study was initiated by Montroll  (4) 
and pursued further by Fisher and Sykes. (5) To construct the transition 
matrix or the recurrence relations for a restricted walk of order r, we start 
with all possible ( r - 1 ) - s t e p  self-avoiding walks, denoted by Wr_ 1 = 
(Wr-l(1),Wr-l(2) ..... W r - - l ( C r  1)), where Cr_ 1 is the total number of 
( r -  1)-step self-avoiding walks. The addition of a further step to a walk 
wr_~(1) in all possible ways leads either to some forbidden self- 
intersections or to a walk of type w,(k), or type wr(l), etc. Considering in 
a similar way the addition of a step to the types w~_ 1(2), wr_ 1(3) .... leads 
to a set of recurrence relations which can be conveniently expressed by the 
matrix equation 

w r = ~ w ,  ~ (1.1) 

where the transition matrix A is of order N - c r  1- The numbers of n-step 
walks ending in types w(1), w(2) .... are then given by the components of wn 
in 

w, , - -An- r+  lw, �9 1 (1.2) 

These recurrence relations can be solved in a standard way. Let 21r  , 

22 ...... 2N~ be the eigenvalues of the transition matrix zi; then the total 
number of n-step restricted walks of order r may be written as 

N 

c,r= ~, air2i~ (1.3) 
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where air are constants which can be determined from the eigenvectors and 
the initial walk distribution. 

If 21r is the eigenvalue of largest modulus, then as the number of steps 
n ~ ~o, the first term in (1.3) will dominate. But if we let n and r tend to 
infinity simultaneously, since the size of the transition matrix increases 
rapidly with r, ignoring the rest of the eigenvalues may not be justifiable 
and we have to examine their contributions to c,,r more carefully. 

We first note that the numerical problem can be simplified con- 
siderably by grouping the eigenvalues (3) according to the irreducible 
representations of the crystallographic point group (see, e.g., ref. 6) 
appropriate for the lattice considered. Only the eigenvalues corresponding 
to the identity representation contribute to the total number of walks c,r. 
The following picture also emerges from our numerical data for restricted 
walks of increasing order r on various two- and three-dimensional lattices: 

(a) The largest eigenvalue 21r of the transition matrix _d is always 
contained in the group of eigenvalues corresponding to the identity 
representation. It is always real, distinct, and well separated from the rest 
of the eigenvalues in the group, which are generally complex and generally 
distributed rather symmetrically about the origin. 

(b) The contribution from 2~r to Cnr accounts for over 99% of the 
total contribution even as n is as small as r, and the contribution increases 
due to the increasing symmetry of the distribution of the rest of the eigen- 
values with increasing r. 

(c) The largest eigenvalue satisfies approximately the relation 

~lr "~" ~(1 + g/Y) (1.4) 

and the origin of the n g term in the asymptotic formula for the total 
number c. of self-avoiding walks of n steps is to be found in 

cn--~'~al)~az'"'~qn-----# " I~ (l+g/r)~--ngl2" 
r = l  

(1.5) 

where g depends only on the dimensionality of the lattice and is found to 
be close to I/3 for the two-dimensional lattices and close to 1/6 for the 
three-dimensional lattices. We can now understand the significance of the 
n 1/3 and n j/6 coefficients in the expression for the total number of 
self-avoiding walks c n. A self-avoiding walk can only establish its true 
character after an infinite number of steps and the limiting value # 
corresponds to this equilibrium state. During the first r steps it has not 
reached equilibrium and the freedom in choosing a new step is 
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approximately 21r, corresponding to a walk of order r. Relations (1.5) 
represents an end effect and it is thecombination of these end effects which 
gives rise to the factor n g in c,. 

If we define the generating function 

C(x)= ~ c , x  n (1.6) 
n = 0  

where co= 1 and cn is the number of n-step self-avoiding walks, the 
asymptotic behavior (see, e.g., ref. 7) of cn given by Eq. (1.5) implies that 
as x approaches its "critical" value 1/#, which depends on the lattice 
considered, the function C(x) behaves like 

const 
C(x) (1 _/~x)l+g (1.7) 

where 1 + g is the critical exponent or index associated with the critical 
point 1/~ of the function C(x). Thus, the behavior of the sequence of the 
largest eigenvalue of the transition matrix A of Eq. (1.1) determines the 
critical exponent of an associated function (1.6). 

Professor Domb and I also studied the correlation in a restricted 
walk of increasing order r. In this case, another group of eigenvalues corre- 
sponding to what we called the maximal representation appropriate for the 
lattice must be considered. The second largest eigenvalue ,~2r of the transi- 
tion matrix A is always contained in this group, and it is always real and 
quite separated from the rest of the eigenvalues in this group, which are 
generally complex and quite symmetrically distributed about the origin. 
The correlation between the sth step u~ and the (s + t)th step us +, is found 
to be given to a good approximation by 

(u~ "u,+ ,) ~ c o n s t -  (l~2r/,~lr) t (1.8) 

Our numerical data suggested that the ratio ~2r/l~lr which characterizes the 
correlations between steps would, as r--+ m, approach 1, which, as is 
known, indicates the onset of long-range order (see, e.g., ref. 8). 

At the time and long after I did the above work, I was often very 
much intrigued by the beauty and intricacies of analyzing the problem 
using the transition matrix method, examining the distribution of eigen- 
values, taking into account of the symmetry by group theory, and 
associating the results with the concept of critical indices and long-range 
order. As I describe the results of two rather different physical problems in 
the following sections, the reader will recognize quite a bit of similarity 
in the mathematical approach even though the details may appear quite 
different. 
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2. STABIL ITY- INSTABIL ITY  T R A N S I T I O N S  IN H A M I L T O N I A N  
S Y S T E M S  OF n D I M E N S I O N S  

In this section, we consider the stability of a class of simple periodic 
motions in a general Hamiltonian system of n dimensions. (9"I~ If C is an 
adjustable parameter of the Hamiltonian, then the simple periodic motion 
may undergo stability-instability transitions (see, e.g., ref. 11) at several or 
infinitely many "critical values" Cp, p - -1 ,  2, 3 ..... of C. We want to show 
that the behavior of the largest Lyapunov exponent/z, to be defined in the 
following, as C approaches Cp from the unstable region is given by 

/x = const x pC-Cpl ~ (2.1) 

where fl = 1/2, independent of the transition point, type of transitions, or 
the dimensionality of the system. 

Consider a general Hamiltonian system whose Hamiltonian is given 
by 

1 n 

H=-~ 2 mj2~ + V(xl, x2,..., xn) (2.2) 
J--1 

where the potential energy V depends on the position coordinates only. 
The shape of the potential function can be quite arbitrary, but we are 
interested in those motions which are bounded; they may be regular or 
chaotic. The equations of motion are given by 

mj2j+~?V/~?xj=O, j = l , 2  ..... n (2.3) 

which are generally nonlinear. We assume that, under a set of initial condi- 
tions, the system has a simple periodic solution with a determinable real 
period z. An example in which this situation often occurs is when the initial 
condition is given by 

Xj(0) = a, 2j(0) = 0, xk(0) = 2,(0) = 0 for k=/=j (2.4) 

for which the equations of motion (2.3) are assumed to give a solution of 
the form 

X/(t)=(~(t), x~(t) = 0 for kCj  (2.5) 

where ~b(t)=~b(t+r) is a periodic function with a period ~. We shall 
consider the stability of this solution when the initial condition given by 
Eq. (2.4) is slightly changed. Let 

w(t) = col(3Xl, 321, Ax2,322,..., Ax,, 32,) (2.6) 
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be a 2n-dimensional column vector whose components represent small 
perturbations ZlXr and A2r from Xr and 2r, r = 1, 2,..., n. The linearized 
equation of motion for w(t) can be written as 

w = A ( t ) w  (2.7) 

where the transition matrix A(t) can be written in an explicitly time- 
dependent form in terms of ~b(t) because of the solution (2.5). Thus A(t) is 
periodic with a period 

T = r  or r/2 (2.8) 

the latter being the case if the period of ~b2(t) is ~/2 and only even powers 
of ~b(t) appear in A(t). The dimension of A(t) is generally 2n. In practice, 
however, it often happens that certain symmetries or simplifying features 
can be used to reduce ~i(t) to a smaller size. The literature on the stability 
analysis of the type of equations given by Eq. (2.7) pioneered by Lyapunov 
is very extensive (see, e.g., ref. 11). 

Let the column vectors wk(t), k =  1, 2 ..... 2n, be the 2n solutions of 
Eq. (2.7) corresponding to the initial values given by wjk(0)~6jk, where 
wjk(t) is the j t h  component of wk(t). Consider the matrix W(t) whose 
elements wjk(t) are the components of these 2n fundamental solutions w(t) 
of Eq. (2.7). Since .~(t) is periodic with period T, there exists a nonsingular 
constant matrix/5 such that 

W(t + T)= 17V(t)fi (2.9) 

Setting t = 0  and noting that 1~(0) is a unit matrix, it follows that the 
elements Pjk of/5 are given by 

pj~ = wjk (T) (2.10) 

The matrix /5, which can be readily numerically determined from 
Eq. (2.10), plays a fundamental role in the stability analysis, for it can be 
shown, using a similar argument to that which led to the Floquet theorem, 
that the eigenvalues 2j, j =  1, 2 ..... 2n, of /5 determine the stability or 
instability of the system whose linearized equations of motion for the small 
perturbations are given by Eq. (2.7). More specifically, denoting 

2j = exp(#j T) (2.11 ) 

o r  

# j=  T -1 ln2j (2.12) 
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the general solution of the differential equation (2.7) is given by 

2n 

w(t )=  '~ cje~'J'~/(t) (2.13) 
j=l  

where the cj are constants and the % ( 0  are functions which are periodic 
with the period T. Notice that we have extracted the essential part of the 
eigenvalues of A(t) in (2.7), namely the eigenvalues of t3 given by (2.9) and 
(2.10), for our study. 

The eigenvalue equation of the matrix /3 can be shown (9) to be 
reciprocal, i.e., it is of the form 

. ~ 2 n - ] - 0 { i / ~ 2 n - - 1 - ~  0 { 2 2 2 n - - 2  ~ - - - .  -~O~2n_2~2-}-O~2n_.12"~ - 1 = 0  (2.14) 

where ~ = c~2,_ 1, c~2 = ct2,-2, etc. That is to say, for every eigenvalue 2 of 
Eq. (2.14), there is also the eigenvalue )~ t. The stable region is charac- 
terized by the roots 2j distributed over the unit circle in the complex plane, 
and the unstable region is characterized by one or more of these eigen- 
values having an absolute value greater than 1. The transition from a stable 
to an unstable region can be classified according to three types: ( I )a  real 
eigenvalue crosses the unit circle at +1;  ( I I ) two conjugate eigenvalues 
cross the unit circle simultaneously; and (III) a real eigenvalue crosses the 
unit circle at - 1 .  

It is always possible to write the characteristic equation (2.14) in the 
form 

( 2 2 - - a l ) . + l ) ( 2 2 - - a 2 2 + l ) . . . ( 2 2 - - a , , 2 + l ) = O  (2.15) 

where a~, a2,..., a,, can be expressed as roots of an nth-degree algebraic 
equation whose coefficients can be determined recursively from the coef- 
ficients ~i, c~2,..., e2 , -  1 of Eq. (2.14). In the stable region, all the a's are real 
and have absolute values ~< 2. A transition of type I to an unstable region 
as a result of changing the value of a parameter of the system past its criti- 
cal value is characterized by one of the a's, aj say, crossing the value + 2 
to a value greater than + 2, while the remaining a's remain real and ~<2 in 
absolute values. Thus, a transition of type I from a stable to an unstable 
region is characterized by a complex-conjugate pair of roots on the unit 
circle approaching each other and closing in on the positive real axis, 
becoming degenerate at the value + 1 at the stability-instability transition 
point, and becoming separate again but appearing on two sides of + 1 on 
the real axis, their values remaining reciprocal of each other. Similarly, a 
transition of type III is characterized by one of the a's in Eq. (2.15) crossing 
the value - 2  to a value less than - 2 ,  which implies a complex-conjugate 
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pair of roots closing in on the negative real axis and becoming degenerate 
at the value - 1  at the transition point, and then becoming separate and 
appearing on two sides of - 1  on the real axis. In either case, the roots of 
the equation 2 2 -  aj2 + 1 = 0 given by 

2+ = �89 [aj +_ (a~ - 4) '/2 ] (2.16) 

change from complex to real, but all the a's in Eq. (2.15) remain real and 
thus remain analytic functions of the parameters of the system, since all the 
real coefficients of Eq. (2.14) are analytic functions of the parameters of the 
system. Thus, as the parameter C approaches the transition point Cp from 
the unstable region, aj can be written as aj = +2 + e, where the positive and 
negative signs refer to transitions of types I and III, respectively, and where 
e = const- I C -  Cpl >10. Thus we find, from Eq. (2.16), that the largest roots 
in absolute values are given, respectively, in type I and type III transitions, 
by 2 =  +1 + e  1/2, or, as C--* Cp from the unstable region, the behavior of 
the largest Lyapunov exponent is given, from Eq. (2.12), by Eq. (2.1), with 
fl = 1/2 independent of the transition points or the dimensionality of the 
system. We shall not consider the case in which, by an accident or a sym- 
metry, the coefficient o f l C - C p l  1/2 happens to be equal to zero. 

A transition of type II from a stable to unstable region is characterized 
by two of the a's, aJ and aj__l, say, in Eq. (2.15) changing from real to a 
complex-conjugate pair, while the remaining a's remain real and <2 in 
absolute values. Since aj and aj+l change from real to complex values 
across the transition point, neither of them is an analytic function of the 
parameters of the system generally. Thus we cannot, for example, assume 
that aj = ajo + e in the neighborhood of the transition point. On the other 
hand, we have 

(.,~2-- @)~-t- 1)(j~2-- aj+ 1,~-/- 1)=,,],4+A~3+B,~2+A.~+ 1 (2.17) 

where 

A =  - ( a j +  aj+ l), B=ajaj+~+2 (2.18) 

From Eqs. (2.17) and (2.18), we get 
a j=  - �89 + (A 2 - 4 B +  8) 1/2 ] 

(2.19) 
aj+ 1 - ~[A-(AZ-4B+S) 1/2] 

and 
)v+ = �89 [a _+ i(4 - a2) 1/2 ] (2.20) 

where a denotes aj or aj+ 1- We note that since aj and aj+l are complex 
conjugate, A and B are always real, and hence they are always analytic 
functions of the parameters of the system. Thus, in the neighborhood of the 
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transition point, A and B can be written as A = A0 + e, B =  B0 + e, and at 
the transition point, A 2 -  4B o + 8 = 0. As the parameter C approaches the 
transition point Cp from the unstable region, a j = - � 8 9  +ie~/2), aj+l = 
- � 8 9  el~2), from Eq. (2.19). Substituting these into Eq. (2.20), we find 
2+ = �88 [ - A  o + i(16-- A2) 1/2] -t- ce 1/2, where c is some complex constant. 
Thus, the absolute square of the largest root is given by 1212= 1 +e~/2, 
where e is equal to some positive constant times ] C -  Cp[. Using Eq. (2.12), 
we find exactly the same behavior given by Eq. (2.1) for the Lyapunov 
exponent as that for the type I and type III transitions, with the same 
critical exponent /3 = �89 which is independent of the transition point, type 
of transitions, or the dimensionality of the system. 

There is a close analogy between the behavior of the Lyapunov expo- 
nent, Eq. (2.1), with the behavior of the long-range order (e.g., magnetiza- 
tion in a ferromagnet) in critical phenomena in statistical mechanics. The 
exponent fl = �89 corresponds to the mean field result. The distribution of the 
eigenvalues 2j and its behavior as the stability-instability transition point 
of type I or III is approached also have their analogs in thermodynamic 
phase transitions in the Lee-Yang theorem (12) on the distribution of roots 
of the grand partition function. However, the behavior of the eigenvalues 
corresponding to the stability-instability transition of type I! does not 
appear to have any analog in equilibrium thermodynamics. 

3. D Y N A M I C  S Y M M E T R I E S  A N D  G R O U P I N G  OF P R O D U C T S  
OF W A V E F U N C T I O N S  

In this section, we consider a particular type of symmetry which may 
arise in the dynamical evolution of a quantum system consisting of N 
transition states when it interacts with an external field. The probability 
amplitudes of the system represented by the N components of the column 
wavevector 

~(t)=col(~/Jl(t), ~J2(t),..., ~JN(t)) 
obey the time-dependent Schr6dinger equation 

0 ~  
ih -~ -=  H ( t ) ~  (3.1) 

where /t(t) is an N• N Hermitian, generally time-dependent Hamiltonian 
matrix of the system. As in the problems expressed by Eqs. (1.1) and (2.7) 
in the previous sections, the interest in the problem may not simply lie with 
finding the solutions of these differential equations for a particular situa- 
tion, but in seeing what unusual properties these equations might have 
under certain variable physical conditions. Questions which are of interest 
to us here are the following: 
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(1) Aside from the obvious conservation of total population given by 

N 

~,,(l)l 2 = const (3.2) 
,=1 

what other constants of evolution may exist ? 

(2) Can we construct a suitable unitary transformation by a time- 
independent unitary matrix 0 such that in the Schr6dinger equation for the 
transformed wavevector ~ ( t )=  O*'~(t) given by 

0~ 
ih ~ = ~(t)~ (3.3) 

the transformed Hamiltonian 

~ ( t )  = U-*H(t) D (3.4) 

becomes a block diagonal form? If so, the components of the transformed 
wavevector ~(t)=(@l(t),tP2(t),...,ON(t)) can be grouped into various 
independent subsets such that components belonging to different subsets 
evolve independently of each other. 

(3) Given that ~(t) can be grouped into various independent sub- 
sets, how do products of the components, such as @*(t) ~k(t), which may 
be of more physical significance, fall into groups? 

An N-state quantum system whose dynamical evolution is given by 
(3.1) is said to possess a certain dynamic symmetry if the system possesses 
one or more constants of evolution other than (3.2). It is said to possess 
what I called the Gell-Mann dynamic symmetry (13) if a time-independent 
unitary matrix 0 can be found such that the transformed Hamiltonian 
~ ( t )  of Eq. (3.3) is a block diagonal matrix of the form 

0 hlz (t) 

h1{(t) ~(t) 

0 

I I t 

I o I o I 

. . . . .  I I 

o I I 
0 

~(t) l I 

T I 
0 

o l I 

l ..... i 

l l 
0 0 

I l 

/+(t) = - 
0 

0 

(3.5) 

0 
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A particularly interesting class of physical Hamiltonians H(t) which 
possess the Gell-Mann symmetry has its matrix elements Hjk(t) given as 
follows: 

For j # k ,  

O, 

Hj~(t) = (aja?~f(O, 
[,aja*f*(t), 

and 

[ j - k l  =even  (3.6a) 

I j - k t  = odd and j odd (3.6b) 

I J -  kl = odd and j even (3.6c) 

Hjj(t) = {0, j o d d  (3.7a) 
g(t), j even  (3.7b) 

where j, k= 1, 2 ..... N, f ( t )  and g(t) are any arbitrary time-dependent 
functions, and aj are any arbitrary constants. The special features expressed 
by Eqs. (3.6a) and (3.7a) occur in many physical problems. For example, 
in quantum electronics involving a system of atoms or molecules with N 
transition levels interacting with a laser field, Eq. (3.6a) is automatically 
satisfied because of the electric dipole selection rule, and Eq. (3.7a) would 
be satisfied if the system is operated under the so-called two-photon 
resonance condition./13~ The matrix elements Ajk(t) of A(t) in Eq. (2.7) also 
possess similar properties as expressed by Eqs. (3.6a) and (3.7a). Equations 
(3.6b), (3.6c), and (3.7b) are the special features required for the system to 
possess the Gell-Mann symmetry. The process of proving (13'~4) that the 
H(t)  given by Eqs. (3.6) and (3.7) can be transformed into the ~ ( t )  given 
by Eq. (3.5) rests on the construction of a time-independent unitary matrix 
0 whose columns consist of the orthonormalized eigenvectors of a matrix 
~(0 /whose  matrix elements are given by 

H)O) = ~aJ a*, I J - kl = odd (3.8) 
(0, I J -  k! = even 

Notice that here the eigenvalues and eigenvectors of H(t)  are not the quan- 
tities of direct relevance. We have, on the other hand, "extracted" that part 
o f /4 ( t )  given by ~(o~ and used its eigenvectors to transform /q(t) into a 
characteristic form ~ ( t )  given by (3.5) for which Eq. (3.3) holds. 

An important feature of a system possessing the Gell-Mann symmetry 
is that it has the following characteristic set of constants of evolution: 

lug" W(t)l 2 + lug" t I / ( t ) l  2 = const 

lu,t, �9 ~(t)l  = const, m = 3, 4,..., N 



638 Hioe 

where ui,  u2 ..... [i N are the column vectors which make up the matrix U, or 

Iq,(t)] 2 + 162(t)]2 = const 

I@m(t)l = const, m = 3 , 4  ..... N 

in terms of the components  of  the transformed wavevector ~(t) .  This 
characteristic set of constants of motion is seen to closely resemble the set 
of quantum numbers associated with the isospin invariance, strangeness, 
charm, bottom, top, etc., in elementary particle physics. 

Table I. The Grouping of the Wavefunct ions for the "'Pseudoscalar Mesons" 
(Upper  Sign) and for the "Vector  Mesons" (Lower  Sign) a 

One group of three: 

2 - 1/2(I//11~2 q- ~2 ~l), 

�89 E(4'~ q;l - ~2~2) + (G  4'1 - G~2) ] ,  
2-1/2(G 4'2 -+ 0 2 ~ )  

N 2 groups of four: 

2-1/2(~l~lm @t~m~l), 2 1/2(~2~Yrn~lm~2) 

�89  2)(N-- 3) groups of two: 

2-1/2(~rn~n q-~Ynt~m), 2 1/2(~',~9.+6.~.,), m4:n 

N 2 groups of one: 

12 -'72[(~1 ~1 + qzq~2 - 263 q53) + (~1~'1 + q~2~2 -- 2q53r 

24-1/2 [(r ~1 + ~2~2 q- ~31~3 - 31P41~4) �9 (lffl I/J1 Jr- lff2 I,b2 -- ~3r - 3~41/J4) ], 

[ 2 N ( N - I ) ]  1/2 O j q ~ _ ( N _ I ) 0 N ~  N + ~ ~ / ~ / _ ( N _ l ) q ~ x ~  N 
3 1 - j = l  

For the "vector meson," we have an additional member: 

N 

(2N) 1/2 y. (qj~j  ~j6j)  as a member of a group of one 
j 1 

Singlet: 

N 

(2N) -1/2 ~ (6i~j  + ~jqj)  
j 1 

am, n=3,4,.. . ,N. 
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If we now form products q~jO, and OjOkOl of the components of this 
wave vector, where the components of different subscripts need not com- 
mute, and form various symmetrized and antisymmetrized combinations of 
them and examine how they can be grouped into independent subsets 
based on their dynamics given by Eqs. (3.3) and (3.5), we find (~5) that the 
groupings of these product wavefunctions agree precisely with the 
groupings of the corresponding elementary particles: the pseudoscalar and 
vector mesons, and the baryons. More precisely, for N possible transition 
states or "quark flavors," the way the various combinations of ~j0k or the 
"mesons" and the various combinations of 0j0k0~ or the "baryons" fall 
into independent subsets according to their dynamics is presented in 
Tables I and II, where the wavefunctions 01, 02, 03, 04, 05, 06 .... 
"correspond" to the wavefunctions of d, u, s, c, b, t .... quarks, respectively. 
In Table II, a, denotes 

a,, = ~ n ( n  - 1)(n - 2) 

and the combinations denoted by the symbol (OjO~Ot) under the headings 
S (symmetric), M s (mixed symmetric), M A  (mixed antisymmetric) and A 
(antisymmetric) have their meanings given in Table III. 

Tablell. The Grouping of the  " B a r y o n s  "'~ 

S (total number  - O ' N + 2 ) :  

One group of four: (IPl~tl@[), (@1@11//2), (@1@2~t2), (1//2@2@2) 

N - 2  groups of three: (O14q0m), (~q@2~',.,), (~'2~'2~%) 

I ( N - - 2 ) ( N - -  1) groups of tWO: (~m0n~l) ,  (~ ,~ , ,~2)  

~ ( N - - 2 ) ( N - -  1 )Ngroups  of one: (Om~'~@p) 

M s or MA (total number  = 2ax + 1 ): 

One group of two: (010l~2) ,  (~2~92~1) 

N - 2  groups of four: 0Pl@lOm), (O~tP2tPm), (01O2~b,.)', (~2~'2~m) 

( N - - 2 )  2 groups of two: (~,~.~,ntpl), (~bm~nO2) 

�89 3)(N--  2) (N--  1) groups of one: (0m~,,Op) 

A (total number  = ~rN): 

N - - 2  groups of one: (~91@2~'m) 

�89  groups of two: (O,,,O,~OJ), (~',,~@.~2), m e n  

~ ( N - - 2 ) ( N - - 3 ) ( N - - 4 )  groups of one: (tp,,,~,n@), m r n 4: p 

~ m , n , p = 3 , 4 , . . . , N .  
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Table III. The Symmetr ic  (S),  Mixed Symmetr ic  (Ms), Mixed Ant isymmetr ic  
(MA), and Ant isymmetr ic  (A)  Arrangements of "Quark Flavor'" 

Wavefunct ions a, [], y 

s: (~,)  = ~,e 

(~f)  = 3 1/=(~f~ +/~e + e~f) 
(eft3;) = 6-1/2[(f7 + yf)e + (Te + ey)f + (ef +/%07] 

Ms: (ee/D=6 l/2[(~f+f~)~-2e~/~] 
(cq~7) = 12  l/2[(fl]) _}_ 7fl)~ ( _~_ (yO~ -}- en/)fl -- 2(~f + fc~)'/] 

(c~f7)' = (1/2)[(fy + 7f)c~ -- (Te + c~7)f ] 

MA: (~ f )=2  l/2(,f--fe), 

(eft,/) = (1/2)[--(//3' -- ,/f)c~ + (Te- c~7) f ] 
(~fy)'= 12 1/2[--(f7--7//)~--(7c~ ey)/~+Z(c~/?--fc~)y] 

A: (o:flT)=6-1/ZE (fly-'dfl)o~ + (ye-o:7)fl + ( e ~ -  fl~)~/] 

Inclusion of the spin would not affect the grouping of these product 
wavefunctions if we assume that the matrix elements of ~ ( t )  in (3.3) are 
independent of the spin. 

It is tempting to suggest that a Hamiltonian of the form (3.5) could be 
the low-energy limit of a more fundamental relativistic field theory in the 
context of elementary particle physics. Regardless of the origin of these 
wavefunctions, we have found the Gell-Mann-type symmetry to be useful 
in many physical problems. 

4. S U M M A R Y  

A unifying feature in the three problems discussed in this paper is con- 
tained in the form of the starting equations (1.1), (2.7), and (3.1). The 
problems of analyzing the distribution of the appropriate eigenvalues and 
finding critical exponents occur in the first two problems, and the problem 
of taking advantage of the special symmetry occurs in all three. I hope 
to have shown some unexpected physical richness displayed by these 
examples, and I am forever thankful to Prof. Domb for first showing me 
the way to find and appreciate these treasures. 
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